Abstract

This article investigates the distributed adaptive fuzzy finite-time fault-tolerant consensus tracking control for a class of unknown nonlinear high-order multiagent systems (MASs) with actuator faults and high powers (ratio of positive odd rational numbers). The fault models include both loss of effectiveness and bias fault. Compared with existing similar results, the MASs considered here are more general and complex, which include the special case when the powers are equal to 1. Besides, the functions in this article are completely unknown and do not need to satisfy any growth conditions. In the backstepping framework, an adaptive fuzzy fault-tolerant consensus tracking controller is designed via adding one power integrator technique and directed graph theory so that the controlled systems are semiglobal practical finite-time stability (SGPFTS). Finally, numerical simulation results further verify the effectiveness of the developed control scheme.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call