Abstract
In this work, an adaptive fuzzy backstepping fault-tolerant control (FTC) issue is tackled for uncertain fractional-order (FO) nonlinear systems with sensor and actuator faults. A fuzzy logic system is exploited to manage unknown nonlinearity. In addition, a novel FO nonlinear filter-based dynamic surface control (DSC) method is constructed, effectively avoiding the inherent complexity explosion problem in the backstepping recursive process, and in the light of the construction of auxiliary functions, compensating the coupling term introduced by faults. On account of certain assumptions, the stability criterion of the FO Lyapunov function is applied to guarantee the stability of the closed-loop system. Finally, the simulation example verifies the validity of the presented control strategy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.