Abstract

This article studies the finite-time tracking control problem for the single-link flexible-joint robot system with actuator failures and proposes an adaptive fuzzy fault-tolerant control strategy. More precisely, the issue of "explosion of complexity" is successfully solved by incorporating the command filtering technology and the backstepping method. The unknown nonlinearities are identified with the help of the fuzzy logic system. An event-triggered mechanism with the relative threshold strategy is exploited to save communication resources. Furthermore, the proposed control design can guarantee that the tracking error converges to a small neighborhood of origin within a finite time by taking full advantage of the finite-time stability theory. Finally, the simulation example is presented to further verify the validity of the proposed control method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.