Abstract
This article focuses on the design of a novel adaptive fuzzy event-triggered tracking control approach for a category of high-order uncertain nonlinear systems with prescribed performance requirements, in which a high-order tan-type barrier Lyapunov function (BLF) is employed to handle and analyze the output tracking error, fuzzy systems are adopted to identify the totally unknown nonlinear functions, and only one gain function rather than parameter estimation functions is designed to cancel out all unknowns appearing in fuzzy systems. As a result, complicated calculations are avoided and a structured simple control is achieved. The proposed controller not only ensures that the tracking error is always within a predefined region but also reduces the communication burden from the controller to the actuator. Finally, comparison simulations are presented to verify the effectiveness of the proposed control schemes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.