Abstract

In this study, an adaptive fuzzy decentralized dynamic surface control (DSC) problem is investigated for switched large-scale nonlinear systems with deferred asymmetric and time-varying full-state constraints. Due to the existence of additional general nonlinearities, complicated output interconnections, and full-state constraints, it is difficult to address the above control problem using existing methods. Fuzzy-logic systems are, therefore, utilized to approximate the unknown nonlinear functions, and the DSC technique is adopted to overcome the "curse of dimensionality" problem. A novel fuzzy adaptive decentralized controller design is presented using the proposed convex combination technique. Furthermore, it is proven that under the proposed controller and state-dependent switching law, all states of the closed-loop system are bounded and deferred asymmetric, and the time-varying full-state constraints are strictly obeyed. The simulation results are presented to demonstrate the effectiveness of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.