Abstract

In this paper, an adaptive fuzzy decentralized robust output feedback control approach is proposed for a class of large-scale strict-feedback nonlinear systems without the measurements of the states. The nonlinear systems in this paper are assumed to possess unstructured uncertainties, time-varying delays, and unknown high-frequency gain sign. Fuzzy logic systems are used to approximate the unstructured uncertainties, K-filters are designed to estimate the unmeasured states, and a special Nussbaum gain function is introduced to solve the problem of unknown high-frequency gain sign. Combining the backstepping technique with adaptive fuzzy control theory, an adaptive fuzzy decentralized robust output feedback control scheme is developed. In order to obtain the stability of the closed-loop system, a new lemma is given and proved. Based on this lemma and Lyapunov-Krasovskii functions, it is proved that all the signals in the closed-loop system are uniformly ultimately bounded and that the tracking errors can converge to a small neighborhood of the origin. The effectiveness of the proposed approach is illustrated from simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.