Abstract

This paper presents an indirect adaptive fuzzy control scheme for a class of MIMO non-affine nonlinear systems with unknown dynamics and actuator saturation for greenhouse climate control problems. The objective is to implement output tracking control on nonlinear systems. Using feedback linearization, control inputs with known control gains are first synthesized by well-modeled dynamics of the system, and Taylor series expansion is used to transform unknown non-affine dynamics into the corresponding affine forms. Fuzzy logic systems (FLS) are introduced to estimate the unknown nonlinearity of the transformed affine system and the saturation nonlinearity due to the actuator constraint. The control inputs corresponding to nonlinearity are constructed based on the estimations. By introducing a robust control term, estimation errors and external disturbances are well handled, so as to guarantee the stability when tracking the control process. The control gain estimation obtained by FLS is modified to avoid singularity. Lyapunov stability analysis is performed to derive the adaptive law. To validate the effectiveness of the proposed control scheme, we apply it to a greenhouse climate control problem. The ventilation rate in the greenhouse model is unknown; therefore, it is estimated by FLS. The simulation exhibits satisfactory results, in which the temperature and humidity inside the greenhouse are well tracked.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.