Abstract
Cable robots are a type of parallel robot in which cables have replaced the usual rigid arms. In cable robots, due to the tensile strength of the cable, the workspace analysis is much more complex than in conventional robots. In this paper, we design an adaptive fuzzy controller for a cable-driven parallel robot (CDPR). In the proposed controller, the results show that the accuracy of the system performance in tracking the reference value as well as the controller performance speed is better than that of the robust method. In one of the simulation modes, the performance speed of the control system for convergence is reduced and its error is very small, which indicates the proper performance of the proposed adaptive fuzzy method. It should be noted that all simulations are performed in a MATLAB software environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Mathematics
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.