Abstract

This paper presents an adaptive fuzzy control approach for a category of uncertain nonstrict-feedback systems with input saturation and output constraint. A variable separation approach is introduced to overcome the difficulty arising from the nonstrict-feedback structure. The problem of input saturation is solved by introducing an auxiliary design system, and output constraint is handled by utilizing a barrier Lyapunov function. Combing fuzzy logic system with the adaptive backstepping technique, the semi-global boundedness of all variables in the closed-loop systems is guaranteed, and the tracking error is driven to the origin with a small neighborhood. The stability of the closed-loop systems is proved, and the simulation results reveal the effectiveness of the proposed approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.