Abstract

An adaptive fuzzy neural network (FNN) control scheme is proposed for a marine vessel with time-varying constraints, guaranteed transient response and unknown dynamics. A series of continuous constraint functions are introduced to shape the motion of a marine vessel. To deal with the constraint problems and transient response problems, an asymmetric time-varying barrier Lyapunov function is designed to ensure that the system states are upper bounded by the considered constraint functions. FNNs are constructed to identify the unknown dynamics. Considering existing approximation errors when FNNs approximating the unknown dynamics, an adaptive term is designed to compensate the approximation errors in order to obtain accurate control. Via Lyapunov stability theory, it has been proved that all the states in the closed-loop system are uniformly bounded ultimately without violating the corresponding prescribed constraint region. Two comparative simulations are carried out to verify the effectiveness of the proposed control.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.