Abstract

This article investigates the cooperative vibration control problem for a flexible manipulator network with model uncertainties and boundary disturbances guided by multiple dynamic leaders. Different from the previous research on a single flexible manipulator, this article focuses on the containment control problem of multiple flexible manipulators. To this end, the boundary control algorithm is proposed for leader agents without disturbance and follower agents with disturbance and uncertainties. The fuzzy logic systems are applied to deal with uncertain and continuous functions in the system model. By constructing the appropriate Lyapunov function, not only the vibrations can be suppressed, but also the containment error between the convex hull spanned by the multiple leaders and all followers can be converged to zero by designing a distributed containment feedback control law. Furthermore, the control algorithm can ensure that all the signals in the closed-loop system are uniformity ultimately bounded; meanwhile, vibration amplitude and error converge to a small compact set. At last, the simulation results prove the effectiveness of the proposed control method.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call