Abstract
Clustering by fast search and find of density peaks (CFSFDP) is proposed to cluster the data by finding of density peaks. CFSFDP is based on two assumptions that: a cluster center is a high dense data point as compared to its surrounding neighbors, and it lies at a large distance from other cluster centers. Based on these assumptions, CFSFDP supports a heuristic approach, known as decision graph to manually select cluster centers. Manual selection of cluster centers is a big limitation of CFSFDP in intelligent data analysis. In this paper, we proposed a fuzzy-CFSFDP method for adaptively selecting the cluster centers, effectively. It uses the fuzzy rules, based on aforementioned assumption for the selection of cluster centers. We performed a number of experiments on nine synthetic clustering datasets and compared the resulting clusters with the state-of-the-art methods. Clustering results and the comparisons of synthetic data validate the robustness and effectiveness of proposed fuzzy-CFSFDP method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.