Abstract

This paper studies the problem of adaptive fuzzy asymptotical quantized tracking control of non-strict-feedback systems with unmodeled dynamics. A dynamic signal is used to cope with the unmodeled dynamics and fuzzy systems are introduced to approximate the packaged unknown nonlinearities. Based on backstepping technique and fuzzy approximation property, a systemic fuzzy adaptive control scheme is proposed. By the utilization of Lyapunov theory, the semi-globally uniformly ultimate boundedness of all closed-loop system signals and asymptotical tracking performance are guaranteed. The main contributions of this work are two aspects: (i) a backstepping-based quantized control algorithm is firstly extended to nonlinear systems with unmodeled dynamics and non-strict-feedback structure; (ii) the semi-globally asymptotic tracking control scheme is independent of the quantized parameter. Simulation results verify the presented control approach.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.