Abstract

Using three actuators for tracking five outputs, rubber-tired gantry (RTG) crane is found to be a highly under-actuated system subject to random wind due to working outdoors. Applying fractional calculus to sliding mode control (SMC), we construct an adaptive robust control system for RTG cranes under parametric variations and unknown wind. The adaptive feature is achieved by using an estimation mechanism for approximating five crane parameters and wind disturbances. The core of the sliding mode displays robust behavior against uncertainties. For comparison, another robust controller is proposed based on finite-time sliding mode. Simulation and experiment results show the superiority of adaptive fractional-order sliding mode control, in which the controller well tracks actuated states and stabilizes unactuated states despite parametric uncertainties and unknown disturbances.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call