Abstract

This paper proposes a novel sliding mode control (SMC) algorithm for direct yaw moment control of four-wheel independent drive electric vehicles (FWID-EVs). The algorithm integrates adaptive law theory, fractional-order theory, and nonsingular terminal sliding mode reaching law theory to reduce chattering, handle uncertainty, and avoid singularities in the SMC system. A sequential quadratic programming (SQP) method is also proposed to optimize the yaw moment distribution under actuator constraints. The performance of the proposed algorithm is evaluated by a hardware-in-the-loop test with two driving maneuvers and compared with two existing SMC-based schemes together with the cases with the change of vehicle parameters and disturbances. The results demonstrate that the proposed algorithm can eliminate chattering and achieve the best lateral stability as compared with the existing schemes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call