Abstract

Recent trends have caused a shift from services deployed solely in monolithic data centers in the cloud to services deployed in the fog (e.g. roadside units for smart highways, support services for IoT devices). Simultaneously, the variety and number of IoT devices has grown rapidly, along with their reliance on cloud services. Additionally, many of these devices are now themselves capable of running containers, allowing them to execute some services previously deployed in the fog. The combination of IoT devices and fog computing has many advantages in terms of efficiency and user experience, but the scale, volatile topology and heterogeneous network conditions of the fog and the edge also present problems for service deployment scheduling. Cloud service scheduling often takes a wide array of parameters into account to calculate optimal solutions. However, the algorithms used are not generally capable of handling the scale and volatility of the fog. This paper presents a scheduling algorithm, named Swirly, for large scale fog and edge networks, which is capable of adapting to changes in network conditions and connected devices. The algorithm details are presented and implemented as a service using the Kubernetes API. This implementation is validated and benchmarked, showing that a single threaded Swirly service is easily capable of managing service meshes for at least 300.000 devices in soft real-time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.