Abstract

An algorithm of adaptive estimation of the magnetic flux for the non-salient permanent magnet synchronous motor (PMSM) for the case when measurable electrical signals are corrupted by a constant offset is presented. A new nonlinear parameterization of the electric drive model based on dynamical regressor extension and mixing (DREM) procedure is proposed. Due to this parameterization the problem of flux estimation is translated to the auxiliary task of identification of unknown constant parameters related to measurement errors. It is proved that the flux observer provides global exponential convergence of estimation errors to zero if the corresponding regression function satisfies the persistent excitation condition. Also, the observer provides global asymptotic convergence if the regression function is square integrable. In comparison with known analogues this paper gives a constructive way of the flux reconstruction for a nonsalient PMSM with guaranteed performance (monotonicity, convergence rate regulation) and, from other hand, a straightforwardly easy implementation of the proposed observer to embedded systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.