Abstract

A thin, agile multiresolution, computational imaging sensor architecture, termed PANOPTES (processing arrays of Nyguist-limited observations to produce a thin electro-optic sensor), which utilizes arrays of microelectromechanical mirrors to adaptively redirect the fields of view of multiple low-resolution subimagers, is described. An information theory-based algorithm adapts the system and restores the image. The modulation transfer function (MTF) effects of utilizing micromirror arrays to steering imaging systems are analyzed, and computational methods for combining data collected from systems with differing MTFs are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call