Abstract

An adaptive fixed-time backstepping control is proposed to achieve the three-dimensional trajectory tracking control of an underactuated autonomous underwater vehicle (AUV) in the presence of model uncertainty and external disturbances. In this paper, the dynamics of the AUV in terms of five degrees of freedom (DOFs) are discussed. Considering it is an underactuated AUV, a virtual velocity guidance law is derived using the backstepping method. For velocity convergence, an adaptive fixed-time control is derived without model parameters, with adaptive adjusting law tackling system unknows. Theoretical analyses demonstrate that the tracking error converges to a small bounded field within a fixed time in the proposed control scheme. The effectiveness and superiority of the proposed method are verified by simulation results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.