Abstract
This paper investigates adaptive fixed-time tracking consensus control problems for multiagent nonlinear pure-feedback systems with performance constraints. Compared with existing results of first/second/high-order multiple agent systems, the studied systems have more complex nonlinear dynamics with each agent being modeled as a high-order pure-feedback form. The mean value theorem is introduced to address the problem of nonaffine structure in nonlinear pure-feedback systems. Meanwhile, radial basis function neural networks (RBFNNs) are employed to approximate unknown functions. Furthermore, a constraint variable is used to guarantee that all local tracking errors are within the prescribed boundaries. It is shown that, by utilizing the proposed consensus control protocol, each tracking consensus error can converge into a neighborhood around zero within designed fixed time, the tracking consensus performance can be ensured during the whole process, and all signals in the investigated systems are bounded. Finally, two simulations are performed and the results demonstrate the effectiveness of the proposed control strategy.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.