Abstract

SummaryThe attitude stabilization problem for rigid spacecraft in the presence of inertial uncertainties, external disturbances, actuator saturations, and actuator faults is addressed in this paper. First, a novel fast terminal sliding mode manifold is designed to avoid the singularity problem while providing high control ability. In addition, fast terminal sliding mode control laws are proposed to make the spacecraft system trajectory fast converge onto the fast terminal sliding mode surface and finally evolve into small region in finite time, which cannot be achieved by the previous literatures. Based on the real sliding mode context, a practical adaptive fast terminal sliding mode control law is presented to guarantee attitude stabilization in finite time. Also, simulation results are presented to illustrate the effectiveness of the control strategies. Copyright © 2015 John Wiley & Sons, Ltd.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call