Abstract

In this article, the adaptive finite-time tracking control is studied for state constrained stochastic nonlinear systems with parametric uncertainties and input saturation. To this end, a definition of semiglobally finite-time stability in probability (SGFSP) is presented and a related stochastic Lyapunov theorem is established and proved. To alleviate the serious uncertainties and state constraints, the adaptive backstepping control and barrier Lyapunov function are combined in a unified framework. Then, by applying a function approximation method and the auxiliary system method to deal with input saturation respectively, two adaptive state-feedback controllers are constructed. Based on the proposed stochastic Lyapunov theorem, each constructed controller can guarantee the closed-loop system achieves SGFSP, the system states remain in the defined compact sets and the output tracks the reference signal very well. Finally, a stochastic single-link robot system is established and used to demonstrate the effectiveness of the proposed schemes.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.