Abstract

This paper investigates the issue of finite-time tracking control for multiple-input–multiple-output nonlinear systems subject to uncertainties and full state constraints. To deal with full state constraints directly, integral barrier Lyapunov functionals (iBLF) are introduced. By using finite-time stability theory, an iBLF-based adaptive finite-time neural control scheme is presented. To solve the problem of “explosion of complexity” in the design of traditional backstepping control, a new finite-time convergent differentiator is presented. Through stability analysis, all closed-loop signals are proved to be semi-globally uniformly ultimately bounded, the finite time convergence can be guaranteed, and the state constraints are never violated. Finally, the attitude tracking simulations for an autonomous airship are conducted to verify the effectiveness of the proposed scheme.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.