Abstract

The finite-time control design problem of half-vehicle active suspension systems with uncertain dynamics and external disturbances is investigated in this article. The unknown functions, which caused by uncertain parameters and unknown dynamics, are approximated with help of neural networks. An extended Lyapunov condition of finite-time stability is employed to achieve the control of the vertical and pitch motions more quickly. Then, assisted by the practical finite-time theory, the finite-time controller is proposed. It can ensure that half-vehicle active suspension systems achieve the stability in a finite time and the ride comfort can be enhanced. In addition, the developed adaptive finite-time control approach is performed to half-vehicle active suspension systems. By comparing analysis of simulation results, the validity of the established scheme is demonstrated and the performance of half-vehicle active suspension systems is exhibited.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.