Abstract

The purpose of this work is the design and analysis of a reliable and efficient a posteriori error estimator for the so-called pointwise tracking optimal control problem. This linear-quadratic optimal control problem entails the minimization of a cost functional that involves point evaluations of the state, thus leading to an adjoint problem with Dirac measures on the right hand side; control constraints are also considered. The proposed error estimator relies on a posteriori error estimates in the maximum norm for the state and in Muckenhoupt weighted Sobolev spaces for the adjoint state. We present an analysis that is valid for two and three-dimensional domains. We conclude by presenting several numerical experiments which reveal the competitive performance of adaptive methods based on the devised error estimator.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.