Abstract

Airborne electromagnetic (AEM) forward modeling has been extensively developed in past years. However, not much attention has been paid to the adaptive numerical algorithms for time-domain electromagnetic modeling. We have created an adaptive method that can generate an effective mesh for time-domain 3D AEM full-wave modeling using an unstructured finite-element method and a backward Euler scheme. For the estimation of the posterior error in the adaptive process, we use a hybrid technique based on the continuity of the normal current density for modeling the off-time channels, and on the continuity of the tangential magnetic field for the on-time channels. To improve the stability of the forward modeling and control the number of grids in the adaptive process, a random grid-selection technique is applied. We check the modeling accuracy of the algorithm by comparing our adaptive results with the semianalytical solution for a time-domain AEM system over a homogeneous half-space. Furthermore, we test the effectiveness of our algorithm for multiple-source time-domain AEM systems by analyzing the meshes generated by the adaptive method and the model results. Finally, we study the topographic effect by calculating time-domain AEM responses over a hill model with an abnormal body embedded.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.