Abstract
Background and objectiveGlaucoma is currently a major cause for irreversible blindness worldwide. A risk factor and the only therapeutic control parameter is the intraocular pressure (IOP). The IOP is determined with tonometers, whose measurements are inevitably influenced by the geometry of the eye. Even though the corneal mechanics have been investigated to improve accuracy of Goldmann and air pulse tonometry, influences of geometric properties of the eye on an acoustic self-tonometer approach are still unresolved. MethodsIn order to understand and compensate for measurement deviations resulting from the geometric uniqueness of eyes, a finite element eye model is designed that considers all relevant eye components and is adjustable to all physiological shapes of the human eye. ResultsThe general IOP-dependent behavior of the eye model is validated by laboratory measurements on porcine eyes. The difference between simulation and measurement is below 8 µm for IOP levels from 5 to 40 mmHg. The adaptive eye model is then used to quantify systematic uncertainty contributions of a variation of eye length and central corneal thickness based on input statistics of a clinical trial series. The adaptive eye model provides the required relation between biometric eye parameters and the corneal deflection amplitude, which here is the measured quantity to trace back to the IOP. Implementing the relations provided by the eye model in a Gaussian uncertainty propagation calculation now allows the quantification of the uncertainty contributions of the biometric parameters on the overall measurement uncertainty of the acoustic self-tonometer. As a result, a systematic uncertainty contribution resulting from deviations in eye length dominate stochastic deviations of the sensor equipment by a factor of 3.5. ConclusionAs perspective, the proposed adaptive eye model provides the basis to compensate for systematic deviations of (but not only) the acoustic self-tonometer.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.