Abstract

In this paper, we develop an adaptive finite element method for the nonlinear steady-state Poisson-Nernst-Planck equations, where the spatial adaptivity for geometrical singularities and boundary layer effects are mainly considered. As a key contribution, the steady-state Poisson-Nernst-Planck equations are studied systematically and rigorous analysis for a residual-based a posteriori error estimate of the nonlinear system is presented. With the regularity of the linearized system derived by taking G-derivatives of the nonlinear system, we show the robust relationship between the error of solution and the a posteriori error estimator. Numerical experiments are given to validate the efficiency of the a posteriori error estimator and demonstrate the expected rate of convergence. In further tests, adaptive mesh refinements for geometrical singularities and boundary layer effects are successfully observed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call