Abstract

Salt marshes are composed of various habitats contributing to high levels of habitat diversity and increased productivity (Kennish, 2002; Zharikov et al., 2005), making them among the most productive ecosystems on the Earth. The salt marsh consists of a halophytic vegetation community growing near saline waters (Mitsch & Gosselink, 2000) characterized by grasses, herbs, and low shrubs (Adam, 2002). Salt marshes exist between the upper limit of the high tide and the lower limit of the mean high water tide (Adam, 2002). They represent an important factor in the support of surrounding food chains, and due to the high level of productivity their economic and aesthetic value is increasing (Delaware Department of Natural Resources and Environmental Control, 2002; Zharikov et al. 2005). The survival and reproduction of many species of commercial fish and shellfish is dependent upon salt marshes (Zharikov & Skilleter, 2004). In addition, salt marshes provide critical habitat and food supply to crustaceans (Zharikov et al., 2005) and shorebirds (Potter et al., 1991). They are often considered as a primary indicator of the ecosystem health (Zhang et al., 1997). Because of their ability to transfer and store nutrients, salt marshes are an important factor in the maintenance and improvement of water quality (Delaware Department of Natural Resources and Environmental Control, 2002; Zhang et al., 1997). In addition, they provide significant economic value as a cost-effective means of flood and erosion control (Delaware Department of Natural Resources and Environmental Control, 2002; Morris et al., 2004). This economic value makes coastal systems the site of elevated human activity (Kennish, 2002). Determining the effects of sea level rise on tidal marsh systems is currently a very popular research area (Temmerman et al., 2004). While average sea level has increased 10-25 cm in the past century (Kennish, 2002), the Atlantic coast has experienced a sea level rise of 30 cm (Hull & Titus, 1986). Local relative sea level has risen an average rate of 0.12 cm yr-1 in the past 2000 years, but at Breakwater Harbor in Lewes, DE sea level is rising at the average rate of 0.33 cm yr-1, nearly three times that rate (Kraft et al., 1992). According to the National Academy of Sciences and the Environmental Protection Agency, sea level rise within the next century could increase 60 cm to 150 cm (Hull & Titus, 1986). The changes in sea level rise are particularly affecting tidal marshes, since they are located between the sea and the terrestrial edge (Adam, 2002; Temmerman et al., 2004). The prediction is that sea level rise will have the most negative effect on marshes in the areas where the landward migration of the marsh is restricted by dams and levees (Rooth & Stevenson, 2000).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call