Abstract
An adaptive filter structure which is based on linear combinations of order statistics is proposed. An efficient method to update the filter coefficients is presented, which is based on the minimal mean-square error criterion and which is similar to the Widrow algorithm for the linear adaptive filters. Another method for coefficient update is presented, which is similar to the recursive least squares (RLS) algorithm and which has faster convergence properties. The proposed-filter can adapt well to a variety of noise probability distributions, including impulsive noise. It also performs well in the case of nonstationary signals and, therefore, it is suitable for image-processing applications.< <ETX xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">></ETX>
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.