Abstract
In this paper, an adaptive artefact canceller is designed using the bounded range artificial bee colony (BR-ABC) optimization technique. The results of proposed method are compared with recursive least square and other evolutionary algorithms. The performance of these algorithms is evaluated in terms of signal-to-noise ratio (SNR), mean square error (MSE), maximum error (ME) mean, standard deviation (SD) and correlation factor (r). The noise attenuation capability is tested on EMG signal contaminated with power line and ECG noise at different SNR levels. A comparative study of various techniques reveals that the performance of BR-ABC algorithm is better in noisy environment. Our simulation results show that the ANC filter using BR-ABC technique provides 15dB improvement in output average SNR, 63 and 83% reduction in MSE and ME, respectively as compared to ANC filter based on PSO technique. Further, the ANC filter designed using BR-ABC technique enhances the correlation between output and pure EMG signal.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.