Abstract

The reliability, reproducibility and accuracy of in-vivo measurements are of great importance and have to be thoroughly studied and to a great extend achieved. Reproducibility problems may result from the electronic components of the applied devices and the variability of measured variables as well as noise sources. The inaccuracy is caused by the approximation in the calculations or the used methods and by diverse sources of errors resulting from the subject under considerations and its surroundings. In sensible measurement like blood components, the positioning of the measuring sensor as well as the variation in the applied pressure and the characteristics of contact area between sensor and skin have a great effect on the accuracy and reproducibility of the measurements. The ambient noise like high frequency and line frequency (50 or 60 Hz) noise can be filtered by the detected biosignals like Photoplethysmogram (PPG) using the conventional analog or digital filters without a great effort. The motion artifact of the subject caused by him as well as by physical motion of body parts or by the surrounding has a varying frequency which may have the same range of the signal frequency. It is difficult to filter noise from these signals, and errors resulting from filtering can distort them. Usually physicians are misled by these noisy signals and the analysis can go wrong. An adaptive filter is essential by biosignal and bio-image processing for noise cancellation without destroying or manipulating the valuable detected information. Biomedical signals such as photoplethysmogram (PPG) (Figure 1), electrocardiogram (ECG), electroencephalogram (EEG), electromyogram (EMG) and impedance cardiogram (ICG) are very important in the diagnosis of different pathological variations. By the detection of these bio-signals as well as by the further derived parameters like oxygen saturation by pulse oximeter, the motion artifact is a great challenge, which may lead to erroneous results or even no results can be delivered [Lee]. The effectiveness of ECG monitors can be significantly impaired by motion artifact, which can cause misdiagnoses, lead to inappropriate treatment decisions or trigger false alarms. However, it is difficult to separate the noise from bio-signal due to its frequency spectrum overlapping that of the ECG. A portable ECG recorder using accelerometer based on motion artifact removal technique will be a great help for patients for tele-homecare or ambulatory ECG monitoring.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call