Abstract

In this paper we consider a class of “filtered” schemes for some first order time dependent Hamilton-Jacobi equations. A typical feature of a filtered scheme is that at the node xj the scheme is obtained as a mixture of a high-order scheme and a monotone scheme according to a filter function F. The mixture is usually governed by F and by a fixed parameter e = e(Δt, Δx) > 0 which goes to 0 as (Δt, Δx) is going to 0 and does not depend on n. Here we improve the standard filtered scheme introducing an adaptive and automatic choice of the parameter e = en(Δt, Δx) at every iteration. To this end, we use a smoothness indicator in order to select the regions where we can compute the regularity threshold en. The numerical tests presented confirms the effectiveness of the adaptive scheme.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.