Abstract

A novel method for interrogation of fiber-optic Fabry-Perot interferometric (FPI) sensors arranged in a white-light setup is presented. The proposed approach is based on a recursive least square (RLS) adaptive filtering to estimate the length of the Fabry-Perot cavity. Applied to an extrinsic FPI sensor with 1.6nm/kPa sensitivity, the interrogation method achieves pressure accuracy of 6.1Pa (0.045mmHg), with an improvement of 8.7 times over standard Q-point tracking method at no computational expense. The RLS-based algorithm also exhibits better resilience to low signal-to-noise ratio (SNR) conditions, achieving 0.87mmHg accuracy for SNR=−5.0dB. The proposed approach finds its best application in medical pressure sensors, for sub-mmHg in vivo pressure detection, and is based on a biocompatible FPI design.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.