Abstract

AbstractWe consider a system of two coupled elliptic equations, one defined on a bulk domain and the other one on the boundary surface. The numerical error of the finite element solution can be controlled by a residual a posteriori error estimator which takes into account the approximation errors due to the discretisation in space as well as the polyhedral approximation of the surface. The estimators naturally lead to refinement indicators for an adaptive algorithm to control the overall error. Numerical experiments illustrate the performance of the a posteriori error estimator and the adaptive algorithm. (© 2016 Wiley‐VCH Verlag GmbH & Co. KGaA, Weinheim)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.