Abstract

In the realm of nonlinear control, feedback linearization via differential geometric techniques has been a concept of paramount importance. However, the applicability of this approach is quite limited, in the sense that a detailed knowledge of the system nonlinearities is required. In practice, most physical chaotic systems have inherent unknown nonlinearities, making real-time control of such chaotic systems still a very challenging area of research. In this paper, we propose using the recurrent high-order neural network for both identifying and controlling unknown chaotic systems, in which the feedback linearization technique is used in an adaptive manner. The global uniform boundedness of parameter estimation errors and the asymptotic stability of tracking errors are proved by the Lyapunov stability theory and the LaSalle–Yoshizawa theorem. In a systematic way, this method enables stabilization of chaotic motion to either a steady state or a desired trajectory. The effectiveness of the proposed adaptive control method is illustrated with computer simulations of a complex chaotic system.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.