Abstract
Antilock braking systems are designed to control the wheel slip, such that the braking force is maximized and steerability is maintained during braking. However, the control of antilock braking systems is a challenging problem due to nonlinear braking dynamics and the uncertain and time-varying nature of the parameters. This paper presents an adaptive neural network-based hybrid controller for antilock braking systems. The hybrid controller is based on the well-known feedback linearization, combined with two feedforward neural networks that are proposed so as to learn the nonlinearities of the antilock braking system associated with feedback linearization controller. The adaptation law is derived based on the structure of the controller, using steepest descent gradient approach and backpropagation algorithm to adjust the networks weights. The weight adaptation is online and the stability of the proposed controller in the sense of Lyapunov is studied. Simulations are conducted to show the effectiveness of the proposed controller under various road conditions and parameter uncertainties.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.