Abstract

Acoustic feedback is a well-known phenomenon in hearing aids. Under certain conditions it causes the so-called howling effect, which is highly annoying for the hearing aid user and limits the maximum amplification of the hearing aid. The standard adaptive feedback cancellation algorithms suffer from a biased adaptation if the input signal is spectrally colored, as it is for speech and music signals. Due to this bias distortion artifacts (entrainment) are generated. In this paper, we present a sub-band feedback cancellation system which combines decorrelation methods with a new realization of a known non-parametric variable step size. To apply this step size in the context of adaptive feedback cancellation, a method to estimate the signal power of the desired input signal, i.e., without feedback, is necessary. A major part of this paper is spent with the theoretical derivation of this estimate. Furthermore, the complete system is evaluated extensively for several speech and music signals as well as for different feedback scenarios in simulations with feedback paths measured in concrete applications as well as for real-time simulations with hearing aid dummies. Both use hearing loss compensation methods as applied in physical hearing aids. The performance is measured in terms of being able to prevent entrainment and to react to feedback path changes. For both simulation setups the system shows a good performance with respect to the two performance measures. Furthermore, the overall feedback cancellation method relies only on few parameters, shows a low computational complexity, and therefore has a strong practical relevance.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call