Abstract

We present an adaptive feature-specific imaging (AFSI) system for application to an M-class recognition task. The proposed system uses nearest-neighbor-based density estimation to compute the (non-Gaussian) class-conditional densities. We refine the density estimates based on the training data and the knowledge from previous measurements at each step. The projection basis for the AFSI system is also adapted based on the previous measurements at each step. The decision-making process is based on sequential hypothesis testing. We quantify the number of measurements required to achieve a specified probability of error (P(e)) and we compare the AFSI system with an adaptive-conventional (ACONV) system. The AFSI system exhibits significant improvement compared to the ACONV system at low signal-to-noise ratio (SNR), and it is shown that, for an M=4 hypotheses, SNR=-10 dB, and a desired P(e)=10(-2), the AFSI system requires 30 times fewer measurements than the ACONV system. Experimental results validating the AFSI system are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.