Abstract

In this paper, a novel adaptive fault-tolerant sliding-mode control scheme is proposed for high-speed trains, where the longitudinal dynamical model is focused, and the disturbances and actuator faults are considered. Considering the disturbances in traction force generated by the traction system, a dynamic model with actuator uncertainties modeled as input distribution matrix uncertainty is established. Then, a new sliding-mode controller with design conditions is proposed for the healthy train system, which can drive the tracking error dynamical system to a predesigned sliding surface in finite time and maintain the sliding motion on it thereafter. In order to deal with the actuator uncertainties and unknown faults simultaneously, the adaptive technique is combined with the fault-tolerant sliding-mode control design together to guarantee that the asymptotical convergence of the tracking errors is achieved. Furthermore, the proposed adaptive fault-tolerant sliding-mode control scheme is extended to the cases of the actuator uncertainties with unknown bounds and the unparameterized actuator faults. Finally, the case studies on a real train dynamic model are presented to explain the developed fault-tolerant control scheme. The simulation results show the effectiveness and feasibility of the proposed method.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.