Abstract

This paper investigates an adaptive fault-tolerant pseudo-proportional-integral-derivative sliding-mode control (pseudo-PID-SMC) scheme for a high-speed train (HST) subject to actuator faults, asymmetric nonlinear actuator saturation (ANAS), and integral quadratic constraints (IQCs). It is worth mentioning that a pseudo-PID-SMC surface is proposed in this paper and the scheme based on this surface does not require acceleration measurement. An adaptive saturation compensation system that makes no assumption, as in existing works where nonlinear functions are used to describe the unsaturated region of ANAS as known and strictly monotonous, is developed to attenuate the adverse effects of ANAS. For the saturation-free and ANAS cases, two adaptive fault-tolerant pseudo-PID-SMC schemes with no chattering, a simple structure, and inexpensive computation are developed to guarantee the exponential convergence of all signals in the closed-loop systems. Finally, simulation results based on a real train dynamic model are presented to show the proposed schemes’ effectiveness and feasibility.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call