Abstract
This paper deals with the design and analysis of an adaptive fault tolerant control approach for a quadrotor Unmanned Aerial Vehicle (UAV) subject to Loss of Actuator Effectiveness (LOE) faults. The FTC approach is based on a Super-Twisting (STW) algorithm with an Integral Terminal sliding mode controller. The controller's parameters were dynamically adapted to ensure proper handling of unmatched perturbations and fault uncertainties. Simulation results were carried out to highlight the controller's ability to mitigate actuator faults without compromising system's performance. Excellent tracking performance and strong chattering attenuation are among the key features of the proposed design.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.