Abstract
Efficient collaborations between interacting agents, be they humans, virtual or embodied agents, require mutual recognition of the goal, appropriate sequencing and coordination of each agent's behavior with others, and making predictions from and about the likely behavior of others. Moment-by-moment eye gaze plays an important role in such interaction and collaboration. In light of this, we used a novel experimental paradigm to systematically investigate gaze patterns in both human-human and human-agent interactions. Participants in the study were asked to interact with either another human or an embodied agent in a joint attention task. Fine-grained multimodal behavioral data were recorded including eye movement data, speech, first-person view video, which were then analyzed to discover various behavioral patterns. Those patterns show that human participants are highly sensitive to momentary multimodal behaviors generated by the social partner (either another human or an artificial agent) and they rapidly adapt their gaze behaviors accordingly. Our results from this data-driven approach provide new findings for understanding micro-behaviors in human-human communication which will be critical for the design of artificial agents that can generate human-like gaze behaviors and engage in multimodal interactions with humans.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: ACM Transactions on Interactive Intelligent Systems
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.