Abstract

Depth functions have many applications in multivariate data analysis, including discriminant analysis and classification. In this paper, we introduce a novel class of data depth: exponential power depth (EPD) functions. Under some conditions, we show that the EPD functions are a statistical depth function, and the sample EPD functions are consistent and asymptotically normal. Based on the proposed EPD functions, we construct a DD-plot (depth-versus-depth plot), which can be applied to the classification problem. Since the EPD functions contain the two tuning parameters, we provide a data-driven approach to select these tuning parameters. The simulation studies and two real data analysis are conducted to assess the finite sample performance of the proposed method.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.