Abstract

Lactococcus lactis is widely used as a starter in the manufacture of cheese and fermented milk. Its main role is the production of lactic acid, but also contributes to the sensory attributes of cheese. Unfortunately, the diversity of suitable strains to be commercialized as dairy starters is limited. In this work, we have applied adaptive evolution under cell envelope stress (AE-CES) as means to provide evolved L. lactis strains with distinct physiological and metabolic traits. A total of seven strains, three of industrial origin and four wild nisin Z-producing L. lactis, were exposed to subinhibitory concentrations of Lcn972, a bacteriocin that triggers the cell envelope stress response in L. lactis. Stable Lcn972 resistant (Lcn972R) mutants were obtained from all of them and two mutants per strain were further characterized. Minimal inhibitory Lcn972 concentrations increased from 4- to 32-fold compared to their parental strains and the Lcn972R mutants retained similar growth parameters in broth. All the mutants acidified milk to a pH below 5.3 with the exception of one that lost the lactose plasmid during adaptation and was unable to grow in milk, and two others with slower acidification rates in milk. While in general phage susceptibility was unaltered, six mutants derived from three nisin Z producers became more sensitive to phage attack. Loss of a putative plasmid-encoded anti-phage mechanism appeared to be the reason for phage susceptibility. Otherwise, nisin production in milk was not compromised. Different inter- and intra-strain-dependent phenotypes were observed encompassing changes in cell surface hydrophobicity and in their autolytic profile with Lcn972R mutants being, generally, less autolytic. Resistance to other antimicrobials revealed cross-protection mainly to cell wall-active antimicrobials such as lysozyme, bacitracin, and vancomycin. Finally, distinct and shared non-synonymous mutations were detected in the draft genome of the Lcn972R mutants. Depending on the parental strain, mutations were found in genes involved in stress response, detoxification modules, cell envelope biogenesis and/or nucleotide metabolism. As a whole, the results emphasize the different strategies by which each strain becomes resistant to Lcn972 and supports the feasibility of AE-CES as a novel platform to introduce diversity within industrial L. lactis dairy starters.

Highlights

  • Dairy starters have been applied for the production of fermented dairy products more than a century ago, when the first dairy starter strains were isolated and intentionally added to milk

  • The aim of this work was to apply adaptive evolution under cell envelope stress (AE-CES) to seven L. lactis strains of different origins, and assess the phenotypes of their Lactococcin 972 (Lcn972) resistant (Lcn972R) mutants with special emphasis in milk growth, surface properties and stress survival

  • To appreciate the value of AE-CES as means to evolve L. lactis and provide new phenotypes, this procedure was applied to seven wild type (WT) L. lactis subsp. lactis strains from different sources (Table 1)

Read more

Summary

Introduction

Dairy starters have been applied for the production of fermented dairy products more than a century ago, when the first dairy starter strains were isolated and intentionally added to milk. The main components of dairy starters are lactic acid bacteria (LAB) and, in particular, Lactococcus lactis is the most common acidifying strain used in the production of cheese. According to their composition, cheese starters are classified into undefined and defined starters. Undefined starters are complex mixtures of unknown composition, whereas defined starters are blends of well-characterized strains of one (single) or multiple (mixed) species (Rodríguez et al, 2012) These starter strains have been isolated and selected according to their technological properties, namely based on fast growth and acidification rate in milk, proteolytic activity and bacteriophage resistance. The use of starters results in reliable cheese quality and, most importantly, in a more consistent acidification rate that allows cheese making be conducted on a fixed time schedule (Johnson, 2017)

Objectives
Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call