Abstract

The grass family, Poaceae, is one of the most successful families among angiosperms. Although it has long been suggested that the chloroplast genomes of the Poaceae have undergone an elevated evolutionary rate compared to other angiosperms, little was known about the details of this phenomenon. By using chloroplast genome data from 31 seed plants species, we recently showed that episodic rate acceleration occurred in the common ancestral branch of the core Poaceae (a clade formed by rice Oryza, wheat Triticum, maize Zea, and their allies) accompanied by elevated non-synonymous/ synonymous rate ratio, while the rate and the non-synonymous/synonymous rate ratio reverted to the low level typical of most monocot species in the terminal branches. It was further shown that positive selection or adaptive evolution operated in several chloroplast proteins during the evolution of ancestral grasses, and the amino acid sites which putatively experienced positive selection have been identified. These findings illustrate the importance of future works of structural biological research of chloroplasts to understand the background of the evolution of the successful group, Poaceae.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call