Abstract

This paper studies the problem of adaptive eventtriggered dynamic output feedback fuzzy control for nonlinear networked control systems. Two crucial factors, packet dropouts and actuator failure, are taken into consideration simultaneously. Takagi-Sugeno fuzzy model is introduced to describe considered systems. The Bernoulli random distribution process is employed to depict the phenomenon of data missing. The actuator failure model is adopted to depict actuator failure. An innovative adaptive event-triggered strategy is built to save computational resource. In the light of Lyapunov stability theory, a fuzzy dynamic output feedback controller is designed to guarantee the stochastic stability and H <sub xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">∞</sub> performance for considered systems. Finally, simulation results are provided to demonstrate the usefulness of the proposed control strategy.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call