Abstract

The adaptive tracking control problem of leader-following nonlinear multiagent systems (MASs) subject to unknown perturbations and limited network bandwidth is investigated by the robust adaptive event-triggered sliding-mode control method. A distributed integral sliding mode is established to realize the finite-time reachability of the states of the leader-following nonlinear MAS. An adaptive triggering control mechanism is then put forward to dynamically adjust the triggering interval, thus reducing the actuator wear and unnecessary network resource consumption. The positions and velocities of the leader-following nonlinear MAS subject to unknown external disturbances are, respectively, driven to the equilibrium point by constructing a distributed event-based robust adaptive sliding-mode protocol. Via the Lyapunov stability theory and Barbalat lemma, sufficient conditions to ensure the adaptive tracking performance are derived for leader-following nonlinear MASs. Three simulation examples to verify the efficacy of the proposed event-based robust adaptive sliding-mode controller design are presented.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call