Abstract

SummaryIn this article, the issue of developing an adaptive event‐triggered neural control for nonlinear uncertain system with input delay is investigated. The radial basis function neural networks (RBFNNs) are adopted to approximate the uncertain terms, where the time‐varying approximation errors are considered into the approximation system. However, the RBFNNs' weight vector is extended, which may cause the computing burdens. To save network resource, the computing burden caused by the weight vector is handled with the developed adaptive control strategy. Furthermore, in order to compensate the effect of input delay, an auxiliary system is introduced into codesign. With the help of adaptive backstepping technique, an adaptive event‐triggered control approach is established. Under the proposed control approach, the effect of input delay can be compensated effectively while the considered system suffered network resource constraint, and all signals in the close‐loop system can be guarantee bounded. Finally, two simulation examples are given to verify the proposed control method's effectiveness.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.