Abstract

This article is concerned with the global fast finite-time adaptive stabilization for a class of high-order uncertain nonlinear systems in the presence of serious nonlinearities and constraint communications. By renovating the technique of continuous feedback domination to the construction of a serial of integral functions with nested sign functions, this article first proposes a new event-triggered strategy consisting of a sharp triggered rule and a time-varying threshold. The strategy guarantees the existence of the solutions of the closed-loop systems and the fast finite-time convergence of original system states while reaching a compromise between the magnitude of the control and the trigger interval. Quite different from traditional methods, a simple logic is presented to avoid searching all the possible lower bounds of trigger intervals. An example of the maglev system and a numerical example are provided to demonstrate the effectiveness and superiority of the proposed strategy.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.